Errors in the estimation of arterial wall shear rates that result from curve fitting of velocity profiles.
نویسندگان
چکیده
An analysis was performed to determine the error that results from the estimation of the wall shear rates based on linear and quadratic curve-fittings of the measured velocity profiles. For steady, fully developed flow in a straight vessel, the error for the linear method is linearly related to the distance between the probe and the wall, dr1, and the error for the quadratic method is zero. With pulsatile flow, especially a physiological pulsatile flow in a large artery, the thickness of the velocity boundary layer, delta is small, and the error in the estimation of wall shear based on curve fitting is much higher than that with steady flow. In addition, there is a phase lag between the actual shear rate and the measured one. In oscillatory flow, the error increases with the distance ratio dr1/delta and, for a quadratic method, also with the distance ratio dr2/dr1, where dr2 is the distance of the second probe from the wall. The quadratic method has a distinct advantage in accuracy over the linear method when dr1/delta << 1, i.e. when the first velocity point is well within the boundary layer. The use of this analysis in arterial flow involves many simplifications, including Newtonian fluid, rigid walls, and the linear summation of the harmonic components, and can provide more qualitative than quantitative guidance.
منابع مشابه
Newtonian and Non-Newtonian Blood Flow Simulation after Arterial Stenosis- Steady State and Pulsatile Approaches
Arterial stenosis, for example Atherosclerosis, is one of the most serious forms of arterial disease in the formation of which hemodynamic factors play a significant role. In the present study, a 3-D rigid carotid artery with axisymmetric stenosis with 75% reduction in cross-sectional area is considered. Laminar blood flow is assumed to have both Newtonian and non-Newtonian behavior (generalize...
متن کاملExamination of effects of multi-walled carbon nanotubes on rheological behavior of engine oil (10W40)
In this study, effects of multi walled carbon nanotubes and temperature on rheological behavior of engine oil (10W40) have been examined. For this purpose, the experiments were carried out in the temperature range of 5-55°C for several suspensions with solid volume fractions of 0.025%, 0.05%, 0.1%, 0.25%, 0.5% and 0.75%. The viscosity of all samples was measured in the shear rate range of 666s-...
متن کاملPresentation of a Non-invasive Method of Estimating Arterial Stiffness by Modeling Blood Flow and Arterial Wall Based on the Determination of Elastic Module of Arterial Wall
Introduction: Arterial stiffness is an important predictor of cardiovascular risk. Several indices have been introduced to estimate the arterial stiffness based on the changes in the brachial blood pressure. Since the substitution of the blood pressure changes in the central arteries such as carotid with the blood pressure changes in the brachial results in error in the blood...
متن کاملImpact of Blood Vessel Wall Flexibility on the Temperature and Concentration Dispersion
The analysis of solute and thermal dispersion in pulsatile flow through the stenotic tapered blood vessel is presented. The present problem is an extension of the work done by Ramana et al. who considered the time-invariant arterial wall. In the present model, the flexible nature of the arterial wall through the obstruction (called stenosis) is considered and it is achieved with the he...
متن کاملANN FOR CORRELATION BETWEEN SHEAR WAVE VELOCITY OF SOIL AND SOME GEOTECHNICAL PARAMETERS
Shear wave velocity (Vs) is known as one of the fundamental material parameters which is useful in dynamic analysis. It is especially used to determine the dynamic shear modulus of the soil layers. Nowadays, several empirical equations have been presented to estimate the shear wave velocity based on the results from Standard Penetration Test (SPT) and soil type. Most of these equations result i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomechanics
دوره 26 4-5 شماره
صفحات -
تاریخ انتشار 1993